The Dot Product

The dot product of two vectors, A and B, is denoted as $A \cdot B$.
The dot product of two vectors is defined as:

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta_{A B}
$$

where the angle $\theta_{A B}$ is the angle formed between the vectors A and B.

B

$$
0 \leq \theta_{A B} \leq \pi
$$

IMPORTANT NOTE: The dot product is an operation involving two vectors, but the result is a scalar !! E.G.,:

$$
A \cdot B=C
$$

The dot product is also called the scalar product of two vectors.

Q1: So, what would the dot product of three vectors be? I.E.,:

A:

$A \cdot B \cdot C=? ?$

Note also that the dot product is commutative, i.e.,:

$$
A \cdot B=B \cdot A
$$

Some more fun facts about the dot product include:

1. The dot product of a vector with itself is equal to the magnitude of the vector squared.

$$
\boldsymbol{A} \cdot \boldsymbol{A}=|\boldsymbol{A}||\boldsymbol{A}| \cos 0^{\circ}=|\boldsymbol{A}|^{2}
$$

Therefore:

$$
|\boldsymbol{A}|=\sqrt{\mathbf{A} \cdot \boldsymbol{A}}
$$

2. If $A \cdot B=0$ (and $|A| \neq 0,|B| \neq 0$), then it must be true that:

$$
\cos \theta_{A B}=0 \Rightarrow \theta_{A B}=90^{\circ}
$$

Thus, if $A \cdot B=0$, the two vectors are orthogonal (perpendicular).

$A \cdot B=0$
3. If $\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}|$, then it must be true that:

$$
\cos \theta_{A B}=1 \Rightarrow \theta_{A B}=0
$$

Thus, vectors A and B must have the same direction. They are said to be collinear (parallel).

4. If $\mathbf{A} \cdot \mathbf{B}=-|\mathbf{A}||\mathbf{B}|$, then it must be true that:

$$
\cos \theta_{A B}=-1 \Rightarrow \theta_{A B}=180^{\circ}
$$

Thus, vectors A and B point in opposite directions; they are said to be anti-parallel.

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =|\mathbf{A}||\mathbf{B}| \cos 180^{\circ} \\
& =-|\mathbf{A}||\mathbf{B}|
\end{aligned}
$$

5. The dot product is distributive with addition, such that:

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}
$$

For example, we can write:

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}+\boldsymbol{C}) & =(\mathbf{A}+\mathbf{B}) \cdot \mathbf{A}+(\mathbf{A}+\mathbf{B}) \cdot \boldsymbol{C} & & \text { (distributive) } \\
& =\boldsymbol{A} \cdot(\mathbf{A}+\mathbf{B})+\boldsymbol{C} \cdot(\mathbf{A}+\mathbf{B}) & & \text { (commutative) } \\
& =\boldsymbol{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{B}+\boldsymbol{C} \cdot \mathbf{A}+\boldsymbol{C} \cdot \mathbf{B} & & \text { (distributive) } \\
& =|\mathbf{A}|^{2}+\mathbf{A} \cdot \mathbf{B}+\boldsymbol{C} \cdot \mathbf{A}+\boldsymbol{C} \cdot \mathbf{B} & &
\end{aligned}
$$

One application of the dot product is the determination of work. Say an object moves a distance d, directly from point P_{a} to point P_{b}, by applying a constant force F.

Q: How much work has been done?

First, we can specify the direct path from point P_{a} to point P_{b} with a directed distance:

The work done is simply the dot product of the applied force vector and the directed distance!

$$
\begin{aligned}
& \text { A: } \begin{aligned}
W & =\mathbf{F} \cdot \overline{\mathbf{R}}_{a b} \\
& =|\mathbf{F}|\left|\overline{\mathbf{R}}_{a b}\right| \cos \theta_{F R} \\
& =d|\mathbf{F}| \cos \theta_{F R}
\end{aligned}
\end{aligned}
$$

The value $|\mathbf{F}| \cos \theta_{F R}$ is said to be the scalar component of force F in the direction of directed distance $\bar{R}_{a b}$

