The Dot Product

The dot product of two vectors, A and B, is denoted as A-B .

The dot product of two vectors is **defined** as:

$$\mathbf{A} \cdot \mathbf{B} = \left| \mathbf{A} \right| \left| \mathbf{B} \right| \ \cos \theta_{AB}$$

where the angle θ_{AB} is the angle formed **between** the vectors **A** and **B**.

$$\mathbf{A} \qquad \qquad \mathbf{\theta}_{AB} \qquad \qquad \mathbf{0} \leq \mathbf{\theta}_{AB} \leq \mathbf{\pi}$$

1.

IMPORTANT NOTE: The dot product is an operation involving **two vectors**, but the result is a **scalar** !! E.G.,:

 $\mathbf{A} \cdot \mathbf{B} = c$

The dot product is also called the **scalar product** of two vectors.

3/5

2. If
$$\mathbf{A} \cdot \mathbf{B} = 0$$
 (and $|\mathbf{A}| \neq 0$, $|\mathbf{B}| \neq 0$), then it must be true that:

$$\cos \theta_{AB} = 0 \implies \theta_{AB} = 90^{\circ}$$

Thus, if **A**•**B** = 0, the two vectors are **orthogonal** (perpendicular).

3. If $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}|$, then it must be true that:

$$\cos\theta_{AB} = 1 \quad \Rightarrow \quad \theta_{AB} = 0$$

Thus, vectors **A** and **B** must have the **same direction**. They are said to be **collinear** (parallel).

One application of the dot product is the determination of work. Say an object moves a distance d, directly from point P_a to point P_b , by applying a constant force **F**.

Q: How much work has been done?

Jim Stiles